PENERAPAN ALGORITMA XGBOOST DALAM PENENTUAN POTENSI SEKTOR WISATA LOKAL DI LOMBOK TIMUR

Authors

  • Wenti Ayu Wahyuni Universitas Teknologi Mataram
  • Muh. Nasirudin Karim Universitas Teknologi Mataram, Mataram, Indonesia
  • Zumratul Muahidin Universitas Teknologi Mataram, Mataram, Indonesia

Keywords:

XGBoost, tourism potential, classification, machine learning, East Lombok

Abstract

East Lombok holds significant tourism potential, yet its development faces challenges due to the lack of data-driven spatial analysis. This study applies the XGBoost algorithm to predict and classify tourism potential based on features such as visitor numbers, facilities, accessibility, digital exposure, and sociocultural indicators. The results show that XGBoost achieves a classification accuracy of 92%, with review ratings and digital activity being the most influential factors. Spatial visualization of the prediction highlights regions with high, medium, and low potential. This approach offers a data-driven tool to support more targeted and effective tourism development strategies.

Downloads

Download data is not yet available.

References

Cesarini, S., Terraglia, I., & Antolini, F. (2025). Explaining tourism expenditure patterns in Italy using XGBoost and SHAP. Social Indicators Research.

Du, X., Zhang, M., Liu, Y., Li, Y., & Chen, X. (2023). The spatial mechanism and prediction of rural tourism development in China. ISPRS International Journal of Geo-Information, 12(8), 321.

Hao, D., Zoh, K. J., & Xie, Y. (2024). The spatial differentiation mechanism of intangible cultural heritage and its integration with tourism development based on explainable machine learning. Heritage Science, 12(1).

Huang, Q., Zhou, C., Li, M., Ma, Y., & Hua, S. (2024). An approach for mapping ecotourism suitability using machine learning: A case study of Zhangjiajie, China. Land, 13(8), 1188

Junaidi, T. (2025). Optimasi metode Long Short-Term Memory menggunakan seleksi fitur Boruta untuk memprediksi jumlah kedatangan wisatawan berbasis Google Trends. UIN Malang.

Liu, X., Chen, Y., Qiu, Z., & Chen, M. (2019). Forecast of the tourist volume of Sanya city by XGBoost model and GM model. In 2019 IEEE International Conference on Intelligent Transportation (ICIT) (pp. 406–410).

Lubis, A.H. (2025). Tourist Classification Based on Consumer Behavior Using XGBoost Algorithm. Journal of Informatics and Technology Engineering.

Ma, S., Huang, W., Cui, N., Cai, Z., Xu, Y., & Qiao, Y. (2024). Exploring the spirit of place in historic districts using XGBoost and spatial data. Sustainability, 16(12), 5182.

Prayuda, A., & Pratama, I. (2024). Prediksi Jumlah Kedatangan Wisatawan Mancanegara di Indonesia Berdasarkan Pintu Masuk Kedatangan Udara. Rabit Jurnal Teknologi dan Sistem Informasi.

Purnama, N., & Utami, N.W. (2023). Penerapan Algoritma Adaboost Untuk Optimasi Prediksi Kunjungan Wisatawan Ke Bali Dengan Metode Decission Tree. JUSIM.

Rantung, V.P., & Tambajong, K.D. (2024). Website-Based Recommendations for Tourist Attractions in Bitung City Using Content-Based Filtering Algorithms. Jurnal Teknik Informatika (JUTIF).

Singgalen, Y.A. (2025). Big Data in Tourism and Hospitality Industry: Predictive Analytics of Hotel Room Trends. Indonesian Journal of Tourism and Leisure.

Downloads

Published

2025-07-31

How to Cite

Wahyuni, W. A., Muh. Nasirudin Karim and Zumratul Muahidin (2025) “PENERAPAN ALGORITMA XGBOOST DALAM PENENTUAN POTENSI SEKTOR WISATA LOKAL DI LOMBOK TIMUR”, SAINTEKES: Jurnal Sains, Teknologi Dan Kesehatan, 4(3), pp. 155–160. Available at: https://ejournal.itka.ac.id/index.php/saintekes/article/view/380 (Accessed: 26 October 2025).